PHƯƠNG PHÁP CÔ LẬP THAM SỐ m LỜI GIẢI CHI TIẾT [SKILLS CÔ LẬP LỚP 12]

PHƯƠNG PHÁP CÔ LẬP THAM SỐ m

Một trong những dạng bài toán khá hay gặp trong phần đơn điệu của hàm số là bài toán tìm tham số m để hàm số đồng biến, nghịch biến trên một khoảng cho trước. Có nhiều kỹ thuật để xử lý và trong bài viết này sẽ nói đến kỹ thuật cô lập tham số m


1. Lý thuyết

Bài toán tổng quát

Cho hàm số f(x,m) (với m là tham số). Tìm giá trị của tham số m để hàm số đồng biến, nghịch biến trên D

Ta cần phải nhớ tính chất sau

g(m)f(x),xDmmaxDf(x)

g(m)f(x),xDmminDf(x)


2. Ví dụ cho hàm bậc 3

Ví dụ 1. Tìm tất cả các giá trị của m để hàm số y=13x3+(m1)x2+(2m3)x23 đồng biến trên (1;+)

Giải

y=x2+2(m1)x+(2m3)

YCBTy0,x(1;+)

x2+2(m1)x+(2m3)0,x(1;+)

Bây giờ ta sẽ sử dụng kỹ thuật cô lập m, tức là đưa toàn bộ m về một vế, vế còn lại là chứa x

mx2+2x+32x+2,x(1;+)

Tới đây thì ta lại áp dụng tính chất phía trên

mmax[1;+)(x2+2x+32x+2)=1

Vậy m1 thì thỏa mãn YCBT


3. Ví dụ cho hàm bậc 4 trùng phương

Ví dụ 2. Tìm các giá trị của tham số m để hàm số y=x42mx23m+1 đồng biến trên (1;2)

Giải

y=4x34mx

YCBTy0,x(1;2)

4x34mx0,x(1;2)

Tới đây ta sử dụng kỹ thuật cô lập m, lưu ý là ta có thể rút gọn bớt x được, vì x(1;2) luôn dương

mx2,x(1;2)

mmin[1;2](x2)=1

Vậy m1 thì thỏa YCBT

Post a Comment

0 Comments