[953301122] Cho hàm số $f(x)$ liên tục trên $\mathbb{R},$ thỏa mãn $f(x)=f(2020-x)$ và $\displaystyle \int\limits_{4}^{2016}{f(x)dx=2}.$ Tính$\int\limits_{4}^{2016}{xf(x)\text{d}x}.$
Xét $\displaystyle I=\int\limits_{4}^{2016}{xf(x)dx}.$ Đặt $t=2020-x\Rightarrow dt=-dx$ và $\left\{ \begin{align} & x=4\Rightarrow t=2016 \\ & x=2016\Rightarrow t=4 \\ \end{align} \right.$
Do đó $\displaystyle I=\int\limits_{4}^{2016}{xf(x)dx}=\int\limits_{2016}^{4}{(2020-t)f(2020-t)(-dt)}$
$\displaystyle =\int\limits_{4}^{2016}{(2020-x)f(2020-x)dx}$
$\displaystyle =\int\limits_{4}^{2016}{(2020-x)f(x)dx}=2020\int\limits_{4}^{2016}{f(x)dx}-\int\limits_{4}^{2016}{xf(x)dx}=2020.2-I$
$\displaystyle \Rightarrow I=4040-I\Leftrightarrow 2I=4040\Leftrightarrow I=2020.$
0 Comments
Vui lòng đăng nhập google để bình luận
Để gõ công thức toán, hãy đặt [biểu thức toán] trong dấu $$
Ví dụ: $[biểu thức toán]$